Monday, February 28, 2011
p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs
The epithelial–mesenchymal transition (EMT) has recently been linked to stem cell phenotype1, 2. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties3, 4 and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT–MET (mesenchymal–epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53–miR-200c pathway.
A Functional Role for Tumor Cell Heterogeneity in a Mouse Model of Small Cell Lung Cancer
Summary
Small cell lung cancer (SCLC) is the lung neoplasia with the poorest prognosis, due to its high metastatic potential and chemoresistance upon relapse. Using the previously described mouse model for SCLC, we found that the tumors are often composed of phenotypically different cells with either a neuroendocrine or a mesenchymal marker profile. These cells had a common origin because they shared specific genomic aberrations. The transition from neuroendocrine to mesenchymal phenotype could be achieved by the ectopic expression of oncogenic RasV12. Crosstalk between mesenchymal and neuroendocrine cells strongly influenced their behavior. When engrafted as a mixed population, the mesenchymal cells endowed the neuroendocrine cells with metastatic capacity, illustrating the potential relevance of tumor cell heterogeneity in dictating tumor properties.
Monday, February 21, 2011
Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling.
Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling.
Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M.
1] Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, 9500 Gilman Drive, Mail Code 0723, La Jolla, California 92093, USA [2] Pfizer Oncology Research Unit West, San Diego, California 92121, USA. [3].
Abstract
Inflammatory mechanisms influence tumorigenesis and metastatic progression even in cancers whose aetiology does not involve pre-existing inflammation or infection, such as breast and prostate cancers. For instance, prostate cancer metastasis is associated with the infiltration of lymphocytes into advanced tumours and the upregulation of two tumour-necrosis-factor family members: receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and lymphotoxin. But the source of RANKL and its role in metastasis have not been established. RANKL and its receptor RANK control the proliferation of mammary lobuloalveolar cells during pregnancy through inhibitor of nuclear factor-κB (IκB) kinase-α (IKK-α), a protein kinase that is needed for the self-renewal of mammary cancer progenitors and for prostate cancer metastasis. We therefore examined whether RANKL, RANK and IKK-α are also involved in mammary/breast cancer metastasis. Indeed, RANK signalling in mammary carcinoma cells that overexpress the proto-oncogene Erbb2 (also known as Neu), which is frequently amplified in metastatic human breast cancers, was important for pulmonary metastasis. Metastatic spread of Erbb2-transformed carcinoma cells also required CD4(+)CD25(+) T cells, whose major pro-metastatic function was RANKL production. Most RANKL-producing T cells expressed forkhead box P3 (FOXP3), a transcription factor produced by regulatory T cells, and were located next to smooth muscle actin (SMA)(+) stromal cells in mouse and human breast cancers. The dependence of pulmonary metastasis on T cells was replaceable by exogenous RANKL, which also stimulated pulmonary metastasis of RANK(+) human breast cancer cells. These results are consistent with the adverse impact of tumour-infiltrating CD4(+) or FOXP3(+) T cells on human breast cancer prognosis and suggest that the targeting of RANKL-RANK can be used in conjunction with the therapeutic elimination of primary breast tumours to prevent recurrent metastatic disease.
Saturday, February 19, 2011
Abundant Human DNA Contamination Identified in Non-Primate Genome Databases
During routine screens of the NCBI databases using human repetitive elements we discovered an unlikely level of nucleotide identity across a broad range of phyla. To ascertain whether databases containing DNA sequences, genome assemblies and trace archive reads were contaminated with human sequences, we performed an in depth search for sequences of human origin in non-human species. Using a primate specific SINE, AluY, we screened 2,749 non-primate public databases from NCBI, Ensembl, JGI, and UCSC and have found 492 to be contaminated with human sequence. These represent species ranging from bacteria (B. cereus) to plants (Z. mays) to fish (D. rerio) with examples found from most phyla. The identification of such extensive contamination of human sequence across databases and sequence types warrants caution among the sequencing community in future sequencing efforts, such as human re-sequencing. We discuss issues this may raise as well as present data that gives insight as to how this may be occurring.
Longo MS, O'Neill MJ, O'Neill RJ, 2011 Abundant Human DNA Contamination Identified in Non-Primate Genome Databases. PLoS ONE 6(2): e16410.doi:10.1371/journal.pone.0016410
Thursday, February 10, 2011
Numero acceso libre cancer
Les dejo el link de un número completo de revisiones de cáncer.
http://onlinelibrary.wiley.com/doi/10.1002/path.v223.2/issuetoc
Wednesday, February 02, 2011
Interesante
Correlated genotypes in friendship networks. doi 10.1073/pnas.1011687108
Abstract
It is well known that humans tend to associate with other humans who have similar characteristics, but it is unclear whether this tendency has consequences for the distribution of genotypes in a population. Although geneticists have shown that populations tend to stratify genetically, this process results from geographic sorting or assortative mating, and it is unknown whether genotypes may be correlated as a consequence of nonreproductive associations or other processes. Here, we study six available genotypes from the National Longitudinal Study of Adolescent Health to test for genetic similarity between friends. Maps of the friendship networks show clustering of genotypes and, after we apply strict controls for population stratification, the results show that one genotype is positively correlated (homophily) and one genotype is negatively correlated (heterophily). A replication study in an independent sample from the Framingham Heart Study verifies that DRD2 exhibits significant homophily and that CYP2A6 exhibits significant heterophily. These unique results show that homophily and heterophily obtain on a genetic (indeed, an allelic) level, which has implications for the study of population genetics and social behavior. In particular, the results suggest that association tests should include friends’ genes and that theories of evolution should take into account the fact that humans might, in some sense, be metagenomic with respect to the humans around them.